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Because of the ease with which they are generated from un­
saturated as well as polyhydroxylic substrates and the stereo­
chemical predictability in their reactions, epoxides play a key role 
as intermediates in organic synthesis.1 We have previously shown 
that radicals generated by reaction of epoxides with paramagnetic 
Cp2TiCl can participate in both intramolecular (hex-5-enyl cy-
clization)28 and intermolecular2b addition reactions. Here we 
report that the radicals generated this way can also serve as 
intermediates in an overall reduction or deoxygenation of the 
epoxide as shown in Scheme I. 

The radical formed upon treating an epoxide with Cp2TiCl can 
be trapped by a H atom donor such as cyclohexa-l,4-diene leading 
to an overall reduction. Since the regio- and stereochemistry of 
the ring opening will be guided by the relative stability of the 
intermediate radicals rather than the ease of approach of the 
hydride reagent such as in the classical SN2-type reduction con­
ditions,38 we would expect different product distributions under 
these conditions.3b,c These expectations have been borne out, and 
in this communication we report our preliminary results in this 
area. We also report applications of related chemistry for the 
deoxygenation of highly functionalized epoxides including epoxy 
nucleosides. The resulting compounds are potential intermediates 
for the synthesis of dideoxy nucleosides used in anti-AIDS che­
motherapy.4 

Dropwise addition of 1.05 equiv of a THF solution of Cp2TiCl 
to a mixture of l,l'-epoxyethylcyclohexane and 10 mmol of cy-
clohexa-1,4-diene in THF at room temperature followed by acidic 
(1 N HCI) workup yielded 92.0% of 1-cyclohexylethanol. Minor 
amounts (1.5% and 0.9% respectively) of 1-ethyl-1-cyclohexanol 
and l-(l-chlorocyclohexyl)ethanol were also isolated. With lithium 
triethylborohydride, as expected, the only product formed is 1-
ethyl-1-cyclohexanol (eq la,b). 
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Functional-group compatibility and further applications of this 
mild reduction procedure are illustrated by the reactions of 
adenosine epoxide 35a (Scheme II). Whereas the LiEt3BH re­
duction of 3a gives exclusively 4a,5b the titanium-mediated re­
duction gives, in addition, the 2'-deoxy derivative, Sa.5* Varying 
amounts (up to 15%) of a deoxygenation product (6a) are also 
obtained under the reaction conditions. This product arises from 
the competitive electron transfer reduction of the intermediate 
radical by the Ti3+ species followed by elimination of the (3 leaving 
group. Indeed, as shown in Scheme II, 6 can be made the exclusive 
product (69% yield) by carefully adding the epoxide in THF to 
an excess (2.1 equiv) of the titanium reagent at room temperature.6 

It should be noted that the reaction is compatible with amino and 
benzamido groups. For comparison, the super hydride reduction 
of 3b removes the benzoyl protecting group from the amine. These 
results along with the previously demonstrated compatibility23'6 

with several other groups including ester groups make this Ti 
reagent a unique reducing agent. 

Important applications of this methodology may be in the 
carbohydrate area where the Mitsunobu reaction7"-0 provides an 
exceptionally short synthesis of various epoxides. Interesting chiral 
synthons may now be prepared from these epoxides by the Ti-
mediated reactions. For example, deoxygenation of methyl fu-
ranoside 77c cleanly yields 66% of the corresponding olefinic 
product, 8, a very sensitive compound that has been the target 
of an extensive, yet unsuccessful, synthetic effort8 (eq 2a,b). 
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Reduction of 7 yields the 4-deoxy derivative 9 under both SN2 
and radical reduction conditions. Likewise, reduction of the 
anhydro sugar 107d gives l l9 and 12' in a ratio of 5:1. The former 
is the exclusive product of reduction with super hydride. Deox­
ygenation, as expected, yields two olefins (1310 and 1410 in a ratio 
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Scheme I 
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Scheme II. Reduction and Deoxygenation of Adenosine Epoxide4 
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"(a) CpjTiCl/cyclohexa-l,4-diene/room temperature, (b) 2Cp2TiCl/room temperature; % yields shown in brackets. 

of 5:1) arising from the ^-eliminations of either the Ti-oxo or the 
OMe species, with the former predominating. 
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One limitation of this reduction protocol is revealed in the 
attempted reduction of monosubstituted terminal epoxides like 
1,2-epoxydecane where up to 33% deoxygenation is observed even 
in the presence of a 10-fold excess of 1,4-cyclohexadiene. This 
may be due to the accessibility of the sterically unencumbered 
secondary/primary radicals to the Ti3+ species resulting in further 
electron transfer reduction and subsequent deoxygenation rather 
than H atom transfer from cyclohexa-l,4-diene. 

Finally, this deoxygenation reaction appears to be mechanis­
tically different from the stereospecific low-valent W-mediated 
reaction reported by Sharpless et al." Addition of either err­
or ?ro«5-5-decene oxide to excess Cp2TiCl afforded an identical 
73:27 mixture of cis- and ?ra/w-5-decenes. The mechanistic details 
of this reaction remain largely unknown except that the (3-elim-
inations of alkoxides and the need for 2 equiv OfTi3+ suggest that 
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the reaction proceeds via carbanion-like intermediates. 

Supplementary Material Available: Details of typical experi­
mental procedures and 1H NMR, HRMS, and/or elemental 
analysis of new compounds (7 pages). Ordering information is 
given on any current masthead page. 
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Reaction of cyanuric acid (CA) with melamine (M) forms a 
stable, insoluble 1:1 complex CA-M.3 We, and others, believe 
that CA-M has a local structure represented by the lattice I.4 We 
have started a program in the design and synthesis of three-di­
mensional supramolecular assemblies based on the hydrogen-
bonding pattern of CA-M. This program is an extension of the 
strategy of molecular self-assembly that has been highly successful 
in forming quasi-two-dimensional monolayers on solid supports.5 
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